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Abstract Here, we study the formation of H-type aggre-
gation of coumarin 153 (C153) dye molecule in presence of
Au nanoparticles and the removal of dye aggregation in
presence of γ- cyclodextrin (CD) due to confinement of dye
molecules inside the nanocavity of γ- cyclodextrin (CD)
using steady state and time resolved spectroscopy. Blue
shifting of absorption band, photoluminescence (PL) band
and the enhancement of decay time of C153 dye confirm
the formation of H-aggregation. It is found that the
concentrations of γ-CD and Au nanoparticles play an
important role on H-type aggregation of dye. The rotational
relaxation time of free C153 is 0.113 ns and the average
relaxation time of C153 dye are 0.275 ns and 0.425 ns for
2 mM and 5 mM γ-CD confined systems, respectively,
indicating the anisotropy increases due to confinement of
dye. An associated type anisotropy decay of C153 dye is
found at 20 mM concentration of CD may be due to
formation of nanotubular aggregates of γ-CD.

Keywords γ-Cyclodextrin . Coumarin 153 dye . Au
nanoparticles . Aggregation . Time-resolved spectroscopy

Introduction

The interaction of fluorophores with metallic particles is
likely to become an active area of research. The most
advantage of Au nanoparticles is that these nanoparticles

could be used as acceptors in biophysical experiments in
vitro as well as in vivo. Metal nanoparticles based
resonance energy transfer has recently gained interest in
finding out the potential applications because metal
plasmon resonances have revealed unexpected electrody-
namic properties [1–8]. Interaction of the electroactive dye
molecules with metal nanocluster very often leads to the
aggregation effect [9]. These types of hybrid organic–
inorganic moieties have promising applications in develop-
ing efficient light energy conversion systems, optical and
sensor devices [10, 11]. Besides, it has great utility in
photoelectrochemical cell as light harvesting antenna
materials and as well as photo sensitizer [12–15]. It is
demonstrated theoretically that the nature of the molecular
orientation of the dye molecules in the aggregated state
determines the spectral shift in the absorption band. In case
of H-type aggregation, there is blue shift of the absorption
spectra due to parallel orientation [16]. Two new excitonic
bands are formed, one with higher energy and other with
lower than the monomer energy level. Thus, non-radiative
energy transfer occurs from higher energy state to lower
energy state [16] and aggregated moieties have lower
fluorescence property. It is well known that the absorption
band red shifted in case of J-type aggregation due to anti
parallel orientation. Formation of aggregated species alters
the photoluminescence spectra of the dye molecules with
respect to monomer. As a result aggregated state show new
photosensitizing properties. Kamat et al. [17] has reported
the efficient H-aggregation behavior of Rhodamine 6 G on
the surface of semiconducting oxide nanoparticles. Kerker
et al. [18] has also reported the aggregation of similar dye
on the Ag nanoparticles surface [18]. Besides, Ghosh et al.
[19] has demonstrated the J-aggregation behavior of eosin
dye on Au nanoparticles surface. They also reported the
effect of metal nanoparticles size on the aggregation
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behavior. On the other hand few groups already have
demonstrated the aggregation dependent photophysical
properties of various dye molecules on metal surfaces
[20–23].

The investigations on chromophores confined in nano-
cavity have recently opened up new possibilities for light
harvesting applications [24–27]. Tunability of the highly
organized materials offers fascinating new possibilities for
exploring energy transfer phenomena for developing new
challenging photonic devices [28]. Among all potential
hosts, the cyclodextrin seems to be the most important ones
because of several advantages. γ- cyclodextrins (CDs) are
cyclic oligosaccharides compounds in which eight glucose
units are linked to form a truncated conical structure [29].
The interior cavity of γ-CD is hydrophobic in nature having
dimension of 7.5–8.5Å and the height of ~8Å [29].
Therefore, large number of organic molecules can be
encapsulated in its hydrophobic cavity and form host-
guest supramolecular structures. It is also well known that
cyclodextrins form nanostructured aggregates through
hydrogen bonding. McGown et al. [30–32] reported the
formation of rigid molecular nanotube aggregates of β-CD
and γ-CD through linkage by the rodlike molecules of
DPH. These nanostructures generated much interest as
alternatives to the carbon nanotube in the design of
supramolecular assemblies to serve as molecular devices.
It is also reported the formation of large linear nanotube
aggregates of γ-CD linked by coumarin 153 dyes and the
temperature effect on rotational dynamics of Coumarin 153
in γ-CD cavity [33]. Recently, the formation of elongated
nanotubular aggregates of Au nanoparticle functinalised γ-
CD with confined C480 dye have been reported. In this
case almost 99% of PL-quenching occurred for C480 in
presence of γ-CD attached Au nanoparticles [34].

To the best of our knowledge, there is no detailed
spectroscopic study on nature of coumarin 153 dye
aggregations in presence of Au nanoparticles and the
removal of these dye aggregation using γ- Cyclodextrin
nanocavity. This paper focuses on how the concentrations
of Au nanoparticles and γ-CD influence on the aggregation
of dye molecules.

Preparation of Citrate Stabilized Gold Nanoparticles

Coumarin 153 (C153) (Sigma-Aldrich), γ-cyclodextrin (γ-
CD) (Aldrich), chloroauric acid (HAuCl4.3H2O) (S.d.Fine
Chem), Tri-sodium citrate dihydrate (Merck) were used as
received. Gold colloids of fairly uniform size were prepared
by well-known citrate reduction method reported by Graber
et al. [35]. Briefly, 50 ml aqueous solution of HAuCl4
(1 mM) was heated to boiling with vigorous stirring. Then
2.5 mL of 50 mM sodium citrate solution was added to the

boiling solution with vigorous stirring. The color of the
solution changes from light yellow to deep red within 5–
10 mins of heating. Then, the solution was allowed to boil
for another 10 min. Stirring was continued until the solution
reached to room temperature. The concentration of as
prepared gold nanoparticles solution was 12 nM. The size
of Au nanoparticle is 14 nm as we reported previously [36].

For the preparation of dye confined in the cavity of
cyclodextrin, 1 mL of 10 μM Coumarin 153 dye solution
was added to 5 ml of 20 mM γ-CD solution. This solution
was kept for 1 day at room temperature for inclusion of dye
in the cyclodextrin cavity. After 1 day, as prepared Au
solution (0.182 ml) was added to 2 ml of C153 γ-CD
solution to maintain the concentration of Au 1 nM. We have
varied the concentration of γ-CD from 20 mM to 2 mM by
only adjusting the amount of γ-CD in aqueous solution.
Further, we have changed the Au nanoparticles concentra-
tion in stock solution from 4 nM to 0.25 nM for different
measurements.

Characterization

The emission spectra of all samples were recorded in a
fluoro Max-P (HORIBA JOBIN YVON) Luminescence
Spectrophotometer. For the time correlated single photon
counting (TCSPC) measurements, the samples were excited
at 405 nm using a picosecond diode laser (IBHNanoled-07) in
an IBH Fluorocube apparatus. The typical fwhm of the system
response using a liquid scatter is about 90 ps. The fluorescence
decays were collected on a Hamamatsu MCP photomultiplier
(C487802). The fluorescence decays were analyzed using
IBH DAS6 software. For anisotropy measurements, a polar-
izer was placed before the sample. The analyzer was rotated
by 90° at regular intervals and the parallel (III) and the
perpendicular (I┴) components for the fluorescence decay
were collected for equal times, alternatively. Then, r(t) was
calculated using the formula [37]

rðtÞ ¼ IIIðtÞ � GI?ðtÞ
IIIðtÞ þ 2GI?ðtÞ ð1Þ

The G value of the setup is 0.58.

Results and Discussion

Figure 1 shows the PL-spectra of Coumarin 153 dye at
different concentrations of γ-CD with and without 1 nM Au
nanoparticles. The PL band of free C153 dye in water is
observed at 545 nm. The PL band gradually blue shifted
(from 544 nm to 535 nm) and quantum yield increases with
increasing the concentration of γ-CD (Fig. 1b to e). This
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results match well with the previous results [37]. It
indicates that the confinement effect increases with increas-
ing the γ-CD concentration. It is interesting to note that the
PL band of free C153 is shifted from 544 nm (Fig. 1a) to
470 nm (Fig. 1a1) in presence of Au nanoparticles. This
blue shifting may be due to H-aggregation of dye molecules
in presence of Au nanoparticles. It is interesting to note that
this blue shifted peak gradually shifted back to its original
peak position at about 535 nm with increasing the
concentration of CD (Fig. 1b1 to e1). It indicates that the
C153 dye molecule is encapsulated in its hydrophobic
cavity of γ-CD. In fact, we did not observe any band at
470 nm when the concentration of γ-CD is 20 mM. At
higher CD concentration most of the C153 monomers are
confined in γ-CD nanochannel to avoid aggregation of dye.
However, at lower concentration of γ-CD, a certain fraction
of C153 is free in water and these free C153 monomers
became aggregated in presence of Au nanoparticles.

To understand the aggregation behavior of C153 dye in
presence of Au, we have used 2 mM γ-CD concentration
and varying the Au nanoparticles concentration from
0.25 nM to 4 nM. The certain fraction of C153 is found
to be free in water at 2 nM γ-CD concentration. Therefore,
the interaction with Au nanoparticles should be clearly
understood at this γ-CD concentration. Figure 2a depicts
the UV–vis spectra of C153 confined in 2 nM CD in
presence of different concentrations of Au nanoparticles.
The absorption band of pure C153 dye in water is obtained
at 430 nm. The absorption spectra of C153 in presence of
different concentrations of Au nanoparticles show another
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band at 520 nm which is the characteristic surface plasmon
resonance band of Au nanoparticles. A blue shifted
absorption band at 350 nm appears in presence of Au
nanoparticles. The intensity of higher energy band at
350 nm increases and the band at 430 nm disappears with
increasing the concentration of Au nanoparticles. It may be
due to intermolecular H-type of aggregation between C153
monomers in presence of Au nanoparticles. Various works
have been done on the aggregation behavior of dye
molecules on the metal nanoparticles surface. H-
aggregation of rhodamine 6 G on metal nanoparticles
surface have been reported previously [17, 18]. As we
previously mentioned that the transition to upper excitonic
state is only allowed in case of H-aggregation that will
show the hypsochromic shift of the absorption spectra [19].
Figure 2b depicts the photoluminescence spectra of C153
confined in 2 mM γ-CD in presence of different concen-
trations of Au nanoparticles. H-aggregated emission band at
470 nm became relatively prominent with increasing the
concentration of Au nanoparticles. A small hump at 470 nm
appears in presence of 0.25 nM Au nanoparticles concen-
tration and the intensity of this band increases with
increasing the concentration of Au from 0.5 nM to 1 nM.
With further increase of Au nanoparticle concentration
(4 nM), the peak at 540 nm disappeared. In this particular
situation only band at 470 nm is observed. It clearly
indicates that higher amount of H-aggregation is obtained at
higher concentration of Au nanoparticles. It reveals that Au
nanoparticles influence the H-aggregation of C153 mole-
cules. In present system, concentration dependent self
aggregation of dye is not possible because the concentration
of C153 is in micromolar region. Therefore, the affecting
factor is the interaction of dye molecules with Au nano-
paricles. Figure 2c shows the plot of I470/I540 vs. concen-

tration of Au nanoparticles. With increasing concentration
of Au the value of I470/I540 increases and it became
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saturated at 2 nM Au concentration. Therefore, all the free
C153 dye in water became aggregated above this Au
nanoparticles concentration. H-aggregation of C153 is
further confirmed by analyzing Fig. 3. Figure 3 depicts
the normalized emission spectra of C153 confined in 2 mM
CD in presence of 1 nM Au nanoparticles concentration. In
this case we have excited the sample by two different
excitation wavelengths (405 nm and 350 nm). Both peaks
at 470 nm and 540 nm are prominent during 405 nm
excitation where the peak at 470 nm is due to H-
aggregation. The blue shifted absorption peak at 350 nm
as seen from absorption spectra is considered for H-
aggregation. To confirm this, further we have excited
C153 in presence of 1 nM Au (confined in 2 mM CD) at
350 nm wavelength of excitation. As we excite C153 at
350 nm in presence of Au nanoparticles, only H-aggregated
moieties will be excited. Interestingly, the emission band at
470 nm without the emission band at 540 nm further
confirms the formation of H-aggregation in presence of Au
nanoparticles. Analysis suggests that the H-aggregation of

C153 dye is found in presence of Au nanoparticles and the
H-aggregation of dye molecules can be avoided in presence
of γ-CD due to confinement of dye in nanocavity.

Time Resolved Spectroscopic Study

The effects of γ-CD and Au nanoparticles on the H-
aggregation of C153 dye are again properly supported by
decay time data obtained from time-resolved spectroscopy.
The decay time of free C153 in water is 1.79 ns. In
presence of 2 nM Au nanoparticles, fast component is
1.72 ns (49%) and slow component is 3.35 ns (51%) and
the average life time is 2.55 ns (Fig. 4a). Fast component is
due to free dye and slow component is due to aggregation

Table 1 Fluorescence decay parameters of C153 dye in absence and
presence of Au nanoparticles and γ-CD (λem=536 nm)

Systems τ1 (a1) (ns) τ2 (a2) (ns) <τ>(ns)

Pure C153 1.79 (1) – 1.79

Pure C153+Au 1.72 (0.49) 3.35 (0.51) 2.55

C153+2 mM CD 1.91 (0.65) 3.45 (0..35) 2.45

C153 +2 mM CD+Au 1.95 (0.45) 3.58 (0.55) 2.85

C153+20 mM CD 1.78 (0.29) 3.71 (0.71) 3.15

C153+20 mM CD+Au 1.84 (0.33) 3.87 (0.67) 3.20
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of dye. In case of 2 mM γ-CD confined systems, the decay
time of C153 is 2.45 ns and this decay time is increased to
2.85 ns in presence of Au nanoparticles (Fig. 4b). It is
known that the decay time in aggregated state is always
higher due to dipole forbidden by momentum selection rule
[38]. Figure 4c shows the decay curves of C153 confined in
20 mM CD with out and in presence of 1 nM Au
nanoparticles. Here, there is almost no change of average
decay time in presence of Au nanoparticles in this time
scale. The increment of decay time value is 6.6%, 2.3% and
1.6% for 5 mM, 10 mM and 20 mM γ-CD concentration,
respectively. Blue shifting of PL band and the enhancement
of decay time of C153 dye confirm the formation of H-
aggregation. All decay data are given in Table 1. In our
view, ultra fast spectroscopic study is essential for deeper
understanding of this phenomenon.

Fluorescence Anisotropy Decay Study

Fluorescence anisotropy decay study reveals the re-
orientation dynamics of the excited fluorophore which
directly help to understand structural information. Many
groups reported earlier that the anisotropy decay of dye
molecules is slower inside CD cavity compared to that
in bulk water [30–33]. We have also studied the time-
resolved anisotropy to understand the rotational dynamics
of C153 confined in different amount of γ-CD. Figure 5
shows the anisotropy decay of C153 free in water and
confined in 2 mM, 5 mM and 20 mM CD concentration. It
is seen from Fig. 6a that a little increase in anisotropy is
obtained in presence of Au nanoparticles (Table 2) in
2 mM γ-CD concentration. It is important to note that
system became more anisotropic with increasing the CD
concentration. An anomalous behavior of anisotropic
decay is found in case of C153 at 20 mM γ-CD both in

absence and presence of Au nanoparticles (Fig. 6b). It
shows a minima at short time and increases at long times.
This type of decay is known as associated anisotropy
decay [33] which is generally observed in biological
systems. It may be due to formation of nanotubular
aggregation of CD [39, 40]. The formation of the γ-CD
aggregated nanotubular structures is based on the contri-
bution of two forces. One is the van der Waals force of
attraction between C153 and the interior of the CD cavity;
the other is the H-bonding interaction between the ring
OH groups of the cyclodextrin moieties, which result the
self-association of γ-CDs.

The rotational diffusion of molecules in a homogeneous
environment can be described by the model of general
ellipsoids [41, 42]. The anisotropy decay r (t) can be
analyzed using the equation

rðtÞ ¼ r0
X
i

exp �t=fið Þ i ¼ 1; 2 . . . ð2Þ

where r0 is the fundamental anisotropy at the time t=0, and
ϕi are the rotational correlation times for rotations around the
different rotational axes of the molecule. Here, the fluores-
cence decay time τi does not influence the anisotropy decay.
The rotational relaxation time of free C153 is 0.113 ns and
the r0 value is 0.154 for free C153 in water. The average
relaxation time for 2 mM and 5 mM γ-CD systems are
0.275 ns and 0.425 ns respectively. All these data are shown
in Table 2. However, the anisotropy decay of a heteroge-
neous environment (Fig. 5d) cannot be described by the
above simple exponential approach. The anisotropy from the
mixture is an intensity weighting average of the contribution
from the probe in environment [41]

rðtÞ ¼ r1ðtÞf1ðtÞ þ r2ðtÞf2ðtÞ ð3Þ

Table 2 Normal anisotropy de-
cay parameters of C153 dye in
different systems

Systems r0 α1 α2 τ1 (ns) τ2 (ns) <τ>(ns)

C153 in water 0.15 1 – 0.11 – 0.11

C153 in water+Au 0.22 1 – 0.13 – 0.13

C153 in 2 mM γ-CD 0.24 1 – 0.27 – 0.27

C153 in 2 mM CD+Au 0.3 0.6 0.4 0.27 0.34 0.3

C153 in 5 mM CD 0.27 1 – 0.42 – 0.42

Table 3 Anisotropic decay
parameters of C153 dye in
20 mM γ-CD

Systems r0 α1 α2 τ1 (ns) τ2 (ns) ϕ1 (ns) ϕ2 (ns)

C153 in 20 mM γ-CD 0.4 0.31 0.69 2.29 3.7 0.59 33

C153 in 20 mM γ-CD+Au 0.42 0.37 0.63 2.39 3.85 0.43 50
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Where r1(t) and r2(t) are the anisotropy decays in each
environment and fi are the fractional contributions of the
decays in each environment. For single exponential decay,
the fractional contribution is given by

fiðtÞ ¼
ai exp � t

t i

� �

a1 exp � t
t1

� �
þ a2 exp � t

t2

� � ð4Þ

Thus, by using Eq. 4, the Eq. 3 can be rewritten as

rðtÞ ¼ r1ðtÞ
a1 exp � t

t1

� �

a1 exp � t
t1

� �
þ a2 exp � t

t2

� � þ r2ðtÞ

�
a2 exp � t

t2

� �

a1 exp � t
t1

� �
þ a2 exp � t

t2

� � ð5Þ

Now, by using Eqs. 2, 5 can be rearranged as

rðtÞ ¼
P
i
ai exp � t

t i

� �
r0i exp � t

ϕi

� �

P
i
ai exp � t

t i

� � i ¼ 1; 2 . . . ð6Þ

Here, αi is the pre-exponential factors of the anisotropy
decay. In such systems it is assumed that each fluorescence
decay time τi is directly associated with one rotational
correlation time ϕi, the observed anisotropy decay r(t) in
the case of two microenvironments results in a complex
decay. The value roi is kept constant, because no alteration
in the fundamental anisotropy r0 of the dyes due to binding
is expected. Using a global fitting approach, the fluores-
cence anisotropy decay curve of C153 in 20 mM γ-CD
(Fig. 6a) is fitted by using Eq. 6, with the fluorescence
decay times τ1 and τ2, as well as the rotation correlation
times ϕ1 and ϕ2 set as global parameters. The fitted results
are enlisted in Table 3. The fluorescence decay times are
2.29 ns and 3.7 ns; and the rotational correlation times are
598 ps and 33 ns. The decay time of 2.29 ns and fast
correlation time of 598 ps is due to unbound free dye (31%)
present in water and the decay time of 3.7 ns and large
correlation time of 33 ns originates from the rotation of the
γ-CD bound dye molecules (69%), whose rotational
volume is very high due to the formation of the nanotubular
structures. The anisotropy decay of C153 confined in
20 mM γ-CD in presence of Au nanoparticles also shows
anomalous anisotropic behavior and the anisotropy decay
was fitted by using Eq. 6. The fitted results are enlisted in
Table 3. The fluorescence decay times are 2.39 ns and
3.85 ns; and the rotational correlation times are 430 ps and
50 ns. In this circumstance, there is no effective interaction
of C153 molecules with Au nanoparticles. This observation
correlates with the previous data obtained from steady state

photoluminescence spectra and time resolved decay time
measurements.

Conclusion

In conclusion, we report the formation of H-aggregation of
C153 dye molecules in presence of Au nanoparticles and
the influence of γ-cyclodextrin on the dye aggregation.
Blue shifting of absorption and PL band and the enhance-
ment of decay time of C153 dye confirm the formation of
H-aggregation. The anisotropy decay reveals that the dye
molecules are confined inside γ-cyclodextrin channels. An
associated type anisotropy decay of C153 dye is found in
high concentration of CD which is explained due to
formation of nanotubular aggregates of γ-CD. Such system
could pave the way for designing new optical based
materials for the application in chemical sensing or light
harvesting system.
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